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Abstract. The vectorial fundamental transformation for the Darboux equations is reduced to the
symmetric case. This is combined with the orthogonal reduction ofLtgpe to obtain reductions

of the vectorial Ribaucour transformations to Egorov systems. We also show that a permutability
property holds for all these transformations. As an example we apply these transformations to the
Cartesian background.

1. Introduction

At the turn of this century a number of results on differential geometry were already well
established [1, 3, 4, 10]. We are thinking of conjugate nets described by the Darboux equations
[3,10] and related transformations [12] of Laplacesvi [16] and fundamental [11, 14]
types; and the orthogonal nets, described by thed aquations [4, 15], and their Ribaucour
transformations [4, 22]. The La@requations describe flat diagonal metrics, among which we
find a distinguished class: those of Egorov type. These particular classes of flat diagonal
metrics are described by the Darboux—Egorov equations [4], that were first proposed by
Darboux [5] and studied further in [13, 21, 23] and finally, as was recognized by Darboux
[4], Egorov gave an almost definitive treatment in [9].

The mentioned results are deeply connected with the modern theory of integrable systems.
Itiswellknown that integrable equations such as Liouville or sine—Gordon were first considered
in the context of differential geometry: minimal and pseudo-spherical surfaces. It has been
discovered recently that thé-component Kadomtsev—Petviashvili (KP) hierarchy describes
the iso-conjugate transformations of the Darboux equations, and its vertex operators correspond
precisely to Laplace, &vy and fundamental transformations [8]. Moreover,Aheomponent
BKP hierarchy models the iso-orthogonal deformations of the & @guations, its vertex
operator being the Ribaucour transformation [20].

In previous papers we have considered the iteration of the mentioned transformations
within modern soliton theory: in [18] we studied thé&\ty transformation and in [17] the
Ribaucour transformation, using a vectorial approach in the latter. In this paper we give
a reduction of the vectorial fundamental transformation [7, 19] to the symmetric case, and
further to the Darboux—Egorov equations.

The layout of this paper is as follows. In section 2 we consider the symmetric reduction of
the Darboux equations obtaining the vectorial symmetric fundamental transformations for all
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the geometrical data; next, in section 3, we combine these results with those of [17] to get the
reduction of the vectorial Ribaucour to the Darboux—Egorov equations, giving the expressions
of all the transformed relevant geometrical data. In both sections we consider the dressing of
the Cartesian background and prove that the permutability property is preserved under all the
reductions considered. We must recall that the permutability property of these transformations
is an important issue that for the fundamental transformation was considered in [7, 11, 14] and
for the Ribaucour transformation in [1, 2, 6, 17].

2. The vectorial fundamental transformation for the symmetric Darboux equations

The Darboux equations

0B;; . .
% — BiPrj =0 i,j,k=1...,N withi, j, k different Q)
U
for the N(N — 1) functions{g;;}i j=1,...n,i%j Of u = (ug, ..., uy), characterizev-dimen-

sional submanifolds oR”, N < D, parametrized by conjugate coordinate systems [3, 10],
and are the compatibility conditions of the following linear system:

0X;
814,'

involving suitableD-dimensional vectorX;, tangent to the coordinate lines.
The so-called Lar@ coefficients satisfy

9H,

== BijHi ij=1....N i#j 3)
u;
and the points of the surfage= (x, ..., xy) can be found by means of
2 _xn i=1....N. (4)
814,'

The fundamental transformation for the Darboux system was introduced in [11, 14], and
its vectorial extension was given in [7,19]. It requires the introduction of a potential in the
following manner: given vector solutios € V and¢; € W*of (2) and (3)i = 1,..., N,
respectively, wherd’, W are linear spaces anfl* is the dual space d¥, one can define a
potential matrix2 (¢, ¢*): W — V through the equations

982(€, ¢")
814,-
Given solutionst; € V and¢f € V* of (2) and (3),i = 1,..., N, respectively, new

rotation coefficient$?[ j» tangent vectorX;, Lamé coefficientsl?l,» and points of the surface
are given by

=§ (. )

Bij = Bij — (€5, Q& €)7%,)
X=X —Q(X,£)QE 97,

H = H; — £Q(.€)7Q(E, H)
=z —Q(X,£)Q&)7QE H).

(6)

Here we assume that (¢, £*) is invertible. We shall refer to this transformation as the
vectorial fundamental transformation with transformation datag;, £).
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The symmetric reduction we are concerned with requires the rotation coefficients to be
symmetric; i.e.

Bij . o

— — BiuBri =0 i,j,k=1,...,N withi, j, k different

iy /Bkﬁk] J J (7)
Bij —Bji =0 i,j=1,...,N i#j.

We now consider which transformation dafd, ¢;, £7) gives a vectorial fundamental
transformation that preserves the symmetric Darboux equations (7).
We make the following observations.

(a) Given a solutiorg; € V of (2) then
& =¢&L ®)

where! means transpose atide L(V) is a linear operator oif, is aV*-valued solution
of (3) if and only if (7) holds. We shall say thatis the associated linear operator.

(b) Given symmetrigg’s, £; € V and¢; € W solutions of (2) ang; and¢; as prescribed in
(8),i =1,..., N, with associated linear operatatsand M, respectively; then

L6 ) - ¢ ENM =0 i=1. N
Ui

(c) Suppose given a solutigh; of the symmetric Darboux equations (g),e V and¢; € W
solving (2) andk} and¢; as prescribed in (8), with associated linear operatoasid M,
respectively. Then, if

L'Q(, ¢ — Q¢ €N'M =0
L'Q(&,€) — Q. ¢)'L=0
the vectorial fundamental transformation (6):
Bij = By — (€. Q. €N7E)
Gi=¢—QE.enE e
& =¢ e et e

9)

is such that
&
Therefore, as2(¢, ¢*) andQ2 (¢, £*) are defined by (5) up to additive constant matrices,
we may take them such that
L'Q(€.¢") — Q. €)'M =0.
These observations imply one of the main results of this paper.

Theorem. The vectorial fundamental transformation (6) preserves the symmetric Darboux
equations whenever the transformation déltg §;, &) satisfies

& =¢L
L'Q(, ¢ — Qi ¢H'L =0.

We say that'V, ¢;, L) is the transformation data for this particular vectorial fundamental
transformation that we call the vectorial symmetric fundamental transformation.
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2.1. Permutability of vectorial symmetric fundamental transformations

The vectorial fundamental transformations permute among them; i.e. the composition of two
vectorial fundamental transformations yields a new vectorial fundamental transformation.
When these two transformations are done in different order the resulting composed vectorial
fundamental transformation is equivalent, through conjugation by a permutation matrix, to
the first composed vectorial fundamental transformation, so that all the geometrical data
are identical for both composed transformations; hence, the permutability character of these
transformations. Moreover, it also follows that the vectorial fundamental transformation is
just a superposition of a number of fundamental transformations.

One can easily conclude that this result can be extended to the vectorial symmetric
fundamental transformation:

Proposition. The vectorial symmetric fundamental transformation with transformation data

fi (1)) (L(l) 0 ))
Vi Vs, ( g
< £ 0 Lp
coincides with the following composition of vectorial symmetric fundamental transformations.
(a) First transform with data
(VZa 51’,(2)7 L(Z))

and denote the transformation hy
(b) On the result of this transformation apply a second one with data

(V1, 5;,(1)1 L(Z))-

Proof. Because the transformation data follows the prescription of our theorem it must satisfy
(5;(5))t = L& s s=12
LiyQ(Eq) €6) — Q). €)' Ly = 0 s=12
Lt(l)Q(é(l)s g(kz)) - Q(E(Z)v E?l))tL(Z) =0.

The first vectorial fundamental transformation is a vectorial symmetric one with data

(V,& (2, L2). Observation (c) implies that the vectorial fundamental transformation of
point (b) is also a vectorial symmetric fundamental transformation. |

From these results we conclude that the composition of scalar symmetric fundamental
transformations results in a vectorial symmetric fundamental transformation with associated
matrix of diagonal type. In fact, when the associated mdtixnot diagonal the corresponding
transformation cannot be obtained by means of composition only.

Dressing the Cartesian backgroundThe Cartesian net has; = e;, with {e;};—1... ~ alinear
independent set of vectorsRf, H; = 1, the coordinates ang(u) = u» and vanishing rotation
coefficientss;; = 0, and hencég; = &;(u;). The points of the new symmetric net are given by

u; -1
z(u) = u — [A + > e ®/ Clu; 6(”[)][ > Qi(“i):|
i=L..N i i=
x |:c > /”" A Ei(ui)i|
i=T..N Juio

where A is a constantD x M matrix, ¢ € RM, Q;(u;) = [;"G du; & ® &L + Q; o with
L'Q;0— QoL =0.
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3. Vectorial transformation for the Egorov metrics

The Lané equations describ¥-dimensional conjugate orthogonal systems of coordinates
[4, 15, 24]:

3B . .
% — BuBij =0 i,j,k=1,...,N withi, j, k different (10)
k
aBi;  0Bji . .
ﬁ+ﬁ+ Z ﬂkiﬁkao la.]=11~-~aN 175.] (11)
8“,’ Buj k=L..N
ki, j

Now we have orthogonal tangent directions, - X; = §;;.

The reduction of the vectorial fundamental transformation to the orthogonal case; i.e. the
vectorial Ribaucour transformation, was studied by us in [17]. The symmetric reduction of the
Darboux equations can be combined with the Eaquations to obtain the so-called equivalent
system of Darboux—Egorov equations

o

a — BiBrj =0 i,jk=1....N withi, j, kdifferent
Uk
Bii— Bji =0 j=1...,N i#] (12)
N
9Bij
Zﬁzo Lj=1...,N i#]
k:lauk

The reduction of the vectorial fundamental transformation to the Darboux—Egorov case
can be thought of as a superposition of two reductions, namely the symmetric together with
the orthogonal reduction. Thus, we must request to the transforming data and potential, the
constraints for both reductions. This implies the second main result of this paper.

Theorem. The vectorial fundamental transformation (6) preserves the Darboux—Egorov
equations (12) whenever the transformation datag;, &) satisfy

13 !
5?=£§L=(a—j+ > @m)

i ki

L'Q(E € - Q€)' L =0
QEEN+QE ) = ) L0

k=1,...,.N

for some linear operatof. € L(V).

Observe that in the scalar ca3é¢,= 1, the second equation above is trivial and the third
one determines the potential completely. The associated transformation in this case can be
found in [24].

Permutability. The vectorial Ribaucour transformation was shown to have the permutability
property in [17], moreover it was carried out as in our proof of the permutability for the
symmetric case. This implies that the combination of both reductions should share the
permutability character of the symmetric and orthogonal reduction.
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Dressing the Cartesian backgroundNow we havet; = exp(L'u;)a; with a; € RM constant
vectors. In the diagonal case,= diag(¢s, ..., £y) we find

Q& € = () Qij

=5 +£ ZGXP((K +L)up)ay iax,

J k=1

M

Hi(u) = |Q( ) Z a; x eXp(lru; )Ly cofad 2 (u))y (Cl +— Z expilu;a;, 1)
j=1

Z 1

xi(u) = Z a; ; eXpeyu;) Cofad 2 (u))y (c, + Z explu;)a ,-,,)
IQ( N 5= b
M

Bij(u) = Z Lraj i cofad Q2 (w))ya;,; expllru; + £iu;)
wherea! := (a;1,...,a;y), and we are using the cofactor matrix cafag, i.e. A=t =

|A|"*cofacA. These type of solutions are the extension to multidimensions of the bright
multi-soliton solutions of the attractive nonlinear Satlinger equation, which describes the
propagation of optical pulses in nonlinear fibres.
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